Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.595
Filtrar
1.
J Neuroinflammation ; 21(1): 92, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610019

RESUMO

Glial cells are key players in the initiation of innate immunity in neurodegeneration. Upon damage, they switch their basal activation state and acquire new functions in a context and time-dependent manner. Since modulation of neuroinflammation is becoming an interesting approach for the treatment of neurodegenerative diseases, it is crucial to understand the specific contribution of these cells to the inflammatory reaction and to select experimental models that recapitulate what occurs in the human disease. Previously, we have characterized a region-specific activation pattern of CD11b+ cells and astrocytes in the α-synuclein overexpression mouse model of Parkinson´s disease (PD). In this study we hypothesized that the time and the intensity of dopaminergic neuronal death would promote different glial activation states. Dopaminergic degeneration was induced with two administration regimens of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), subacute (sMPTP) and chronic (cMPTP). Our results show that in the sMPTP mouse model, the pro-inflammatory phenotype of striatal CD11b+ cells was counteracted by an anti-inflammatory astrocytic profile. In the midbrain the roles were inverted, CD11b+ cells exhibited an anti-inflammatory profile and astrocytes were pro-inflammatory. The overall response generated resulted in decreased CD4 T cell infiltration in both regions. Chronic MPTP exposure resulted in a mild and prolonged neuronal degeneration that generated a pro-inflammatory response and increased CD4 T cell infiltration in both regions. At the onset of the neurodegenerative process, microglia and astrocytes cooperated in the removal of dopaminergic terminals. With time, only microglia maintained the phagocytic activity. In the ventral midbrain, astrocytes were the main phagocytic mediators at early stages of degeneration while microglia were the major phagocytic cells in the chronic state. In this scenario, we questioned which activation pattern recapitulates better the features of glial activation in PD. Glial activation in the cMPTP mouse model reflects many pathways of their corresponding counterparts in the human brain with advanced PD. Altogether, our results point toward a context-dependent cooperativity of microglia/myeloid cells and astrocytes in response to neuronal damage and the relevance of selecting the right experimental models for the study of neuroinflammation.


Assuntos
Neuroglia , Doenças Neuroinflamatórias , Humanos , Animais , Camundongos , Fagócitos , Astrócitos , Modelos Animais de Doenças , Dopamina , Anti-Inflamatórios
2.
Cells ; 13(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534379

RESUMO

Disulfiram (DSF), an anti-alcoholism medicine, exerts treatment effects in patients suffering from persistent Borreliosis and also exhibits anti-cancer effects through its copper chelating derivatives and induction of oxidative stress in mitochondria. Since chronic/persistent borreliosis is characterized by increased amounts of pro-inflammatory macrophages, this study investigated opsonin-independent phagocytosis, migration, and surface marker expression of in vivo activated and in vitro cultured human monocyte-derived phagocytes (macrophages and dendritic cells) with and without DSF treatment. Phagocytosis of non-opsonized Dynabeads® M-450 and migration of macrophages and dendritic cells were monitored using live cell analyzer Juli™ Br for 24 h, imaging every 3.5 min. To simultaneously monitor phagocyte function, results were analyzed by a newly developed software based on the differential phase contrast images of cells before and after ingestion of Dynabeads. DSF decreased the phagocytic capacities exhibited by in vitro enriched and long-lived phagocytes. Although no chemotactic gradient was applied to the test system, vigorous spontaneous migration was observed. We therefore set up an algorithm to monitor and quantify both phagocytosis and migration simultaneously. DSF not only reduced phagocytosis in a majority of these long-lived phagocytes but also impaired their migration. Despite these selective effects by DSF, we found that DSF reduced the expression densities of surface antigens CD45 and CD14 in all of our long-lived phagocytes. In cells with a high metabolic activity and high mitochondrial contents, DSF led to cell death corresponding to mitochondrial oxidative stress, whereas metabolically inactive phagocytes survived our DSF treatment protocol. In conclusion, DSF affects the viability of metabolically active phagocytes by inducing mitochondrial stress and secondly attenuates phagocytosis and migration in some long-lived phagocytes.


Assuntos
Dissulfiram , Proteínas Opsonizantes , Humanos , Dissulfiram/farmacologia , Fagocitose , Fagócitos , Macrófagos
3.
Immunol Rev ; 322(1): 71-80, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429865

RESUMO

Since their description by Metchnikoff in 1905, phagocytes have been increasingly recognized to be the entities that traffic to sites of infection and inflammation, engulf and kill infecting organisms, and clear out apoptotic debris all the while making antigens available and accessible to the lymphoid organs for future use. Therefore, phagocytes provide the gateway and the first check in host protection and immune response. Disorders in killing and chemotaxis lead not only to infection susceptibility, but also to autoimmunity. We aim to describe chronic granulomatous disease and the leukocyte adhesion deficiencies as well as myeloperoxidase deficiency and G6PD deficiency as paradigms of critical pathways.


Assuntos
Doença Granulomatosa Crônica , Neutrófilos , Humanos , Doença Granulomatosa Crônica/metabolismo , Fagocitose , Fagócitos/fisiologia , Inflamação/metabolismo
4.
Cell Host Microbe ; 32(3): 411-424.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38307020

RESUMO

Intracellular Salmonella experiencing oxidative stress downregulates aerobic respiration. To maintain cellular energetics during periods of oxidative stress, intracellular Salmonella must utilize terminal electron acceptors of lower energetic value than molecular oxygen. We show here that intracellular Salmonella undergoes anaerobic respiration during adaptation to the respiratory burst of the phagocyte NADPH oxidase in macrophages and in mice. Reactive oxygen species generated by phagocytes oxidize methionine, generating methionine sulfoxide. Anaerobic Salmonella uses the molybdenum cofactor-containing DmsABC enzymatic complex to reduce methionine sulfoxide. The enzymatic activity of the methionine sulfoxide reductase DmsABC helps Salmonella maintain an alkaline cytoplasm that supports the synthesis of the antioxidant hydrogen sulfide via cysteine desulfuration while providing a source of methionine and fostering redox balancing by associated dehydrogenases. Our investigations demonstrate that nontyphoidal Salmonella responding to oxidative stress exploits the anaerobic metabolism associated with dmsABC gene products, a pathway that has accrued inactivating mutations in human-adapted typhoidal serovars.


Assuntos
Metionina/análogos & derivados , NADPH Oxidases , Fagócitos , Animais , Camundongos , Humanos , Anaerobiose , Fagócitos/metabolismo , Metionina/metabolismo , Salmonella typhimurium/metabolismo , Respiração
5.
Dev Cell ; 59(7): 853-868.e7, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38359833

RESUMO

Phagocytes remove dead and dying cells by engaging "eat-me" ligands such as phosphatidylserine (PtdSer) on the surface of apoptotic targets. However, PtdSer is obscured by the bulky exofacial glycocalyx, which also exposes ligands that activate "don't-eat-me" receptors such as Siglecs. Clearly, unshielding the juxtamembrane "eat-me" ligands is required for the successful engulfment of apoptotic cells, but the mechanisms underlying this process have not been described. Using human and murine cells, we find that apoptosis-induced retraction and weakening of the cytoskeleton that anchors transmembrane proteins cause an inhomogeneous redistribution of the glycocalyx: actin-depleted blebs emerge, lacking the glycocalyx, while the rest of the apoptotic cell body retains sufficient actin to tether the glycocalyx in place. Thus, apoptotic blebs can be engaged by phagocytes and are targeted for engulfment. Therefore, in cells with an elaborate glycocalyx, such as mucinous cancer cells, this "don't-come-close-to-me" barrier must be removed to enable clearance by phagocytosis.


Assuntos
Actinas , Glicocálix , Animais , Humanos , Camundongos , Glicocálix/metabolismo , Actinas/metabolismo , Fagócitos , Fagocitose/fisiologia , Ligantes , Apoptose/fisiologia , Fosfatidilserinas/metabolismo
6.
Nature ; 627(8002): 189-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355798

RESUMO

Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.


Assuntos
NADPH Oxidase 2 , Fagócitos , Humanos , Elétrons , Ativação Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Heme/química , Heme/metabolismo , NADP/metabolismo , NADPH Oxidase 2/química , NADPH Oxidase 2/metabolismo , Fagócitos/enzimologia , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Superóxidos/metabolismo , Ligação Proteica
7.
PLoS Genet ; 20(2): e1011176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408082

RESUMO

Colorectal cancer (CRC) is a major cause of cancer mortality and a serious health problem worldwide. Mononuclear phagocytes are the main immune cells in the tumor microenvironment of CRC with remarkable plasticity, and current studies show that macrophages are closely related to tumor progression, invasion and dissemination. To understand the immunological function of mononuclear phagocytes comprehensively and deeply, we use single-cell RNA sequencing and classify mononuclear phagocytes in CRC into 6 different subsets, and characterize the heterogeneity of each subset. We find that tissue inhibitor of metalloproteinases (TIMPs) involved in the differentiation of proinflammatory and anti-inflammatory mononuclear phagocytes. Trajectory of circulating monocytes differentiation into tumor-associated macrophages (TAMs) and the dynamic changes at levels of transcription factor (TF) regulons during differentiation were revealed. We also find that C5 subset, characterized by activation of lipid metabolism, is in the terminal state of differentiation, and that the abundance of C5 subset is negatively correlated with CRC patients' prognosis. Our findings advance the understanding of circulating monocytes' differentiation into macrophages, identify a new subset associated with CRC prognosis, and reveal a set of TF regulons regulating mononuclear phagocytes differentiation, which are expected to be potential therapeutic targets for reversing immunosuppressive tumor microenvironment.


Assuntos
Neoplasias Colorretais , Monócitos , Humanos , RNA/metabolismo , Macrófagos/metabolismo , Diferenciação Celular/genética , Neoplasias Colorretais/patologia , Fagócitos/metabolismo , Microambiente Tumoral/genética
8.
Virulence ; 15(1): 2313413, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38357909

RESUMO

Over the last 20 years, the larva of the greater waxmoth, Galleria mellonella, has rapidly increased in popularity as an in vivo mammalian replacement model organism for the study of human pathogens. Experimental readouts of response to infection are most often limited to observing the melanization cascade and quantifying larval death and, whilst transcriptomic and proteomic approaches, and methods to determine microbial load are also used, a more comprehensive toolkit of profiling infection over time could transform the applicability of this model. As an invertebrate, Galleria harbour an innate immune system comprised of both humoral components and a repertoire of innate immune cells - termed haemocytes. Although information on subtypes of haemocytes exists, there are conflicting reports on their exact number and function. Flow cytometry has previously been used to assay Galleria haemocytes, but protocols include both centrifugation and fixation - physical methods which have the potential to affect haemocyte morphology prior to analysis. Here, we present a method for live haemocyte analysis by flow cytometry, revealing that Galleria haemocytes constitute only a single resolvable population, based on relative size or internal complexity. Using fluorescent zymosan particles, we extend our method to show that up to 80% of the Galleria haemocyte population display phagocytic capability. Finally, we demonstrate that the developed assay reliably replicates in vitro data, showing that cell wall ß-1,3-glucan masking by Candida albicans subverts phagocytic responses. As such, our method provides a new tool with which to rapidly assess phagocytosis and understand live infection dynamics in Galleria.


Assuntos
Mariposas , Proteômica , Animais , Humanos , Larva , Fagocitose , Fagócitos , Mamíferos
9.
PLoS One ; 19(1): e0295547, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206970

RESUMO

Streptococcus uberis is frequently isolated from milk collected from dairy cows with mastitis. According to the host's immunity, bacterial virulence, and their interaction, infection with some strains can induce persistent subclinical inflammation, while infection with others induces severe inflammation and transient mastitis. This study compared the inflammatory response of milk-isolated white blood cells (mWBCs) to persistent and transient S. uberis strains. Quarter milk samples were collected aseptically for bacterial culture from all lactating cows once a week over a 10-week period. A transient and noncapsular strain with a 1-week intramammary infection duration was selected from this herd, while a persistent and capsular S. uberis strain with an intramammary infection longer than 2 months from our previous study was selected based on an identical pulse field gel electrophoresis pattern during the IMI episode. Cellular and molecular responses of mWBCs were tested, and the data were analyzed using repeated analysis of variance. The results showed a higher response in migration, reactive oxygen species generation, and bacterial killing when cells were stimulated with transient S. uberis. In contrast, the persistent strain led to increased neutrophil extracellular trap release. This study also highlighted several important molecular aspects of mWBCs. Gene expression analyses by real-time RT-PCR revealed a significant elevation in the expression of Toll-like receptors (TLR-1, TLR-2, TLR-6) and proinflammatory cytokines (tumor necrosis factor-alpha or TNF-α) with the transient strain. Additionally, Streptococcus uberis capsule formation might contribute to the capability of these strains to induce different immune responses. Altogether, these results focus on the immune function of activated mWBCs which demonstrate that a transient strain can elicit a stronger local immune response and, subsequently, lead to rapid recovery from mastitis.


Assuntos
Mastite Bovina , Infecções Estreptocócicas , Streptococcus , Animais , Feminino , Bovinos , Humanos , Leite/metabolismo , Infecções Estreptocócicas/microbiologia , Lactação , Mastite Bovina/microbiologia , Fagócitos , Inflamação/metabolismo
10.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38226975

RESUMO

Aducanumab, an anti-amyloid immunotherapy for Alzheimer's disease, efficiently reduces Aß, though its plaque clearance mechanisms, long-term effects, and effects of discontinuation are not fully understood. We assessed the effect of aducanumab treatment and withdrawal on Aß, neuritic dystrophy, astrocytes, and microglia in the APP/PS1 amyloid mouse model. We found that reductions in amyloid and neuritic dystrophy during acute treatment were accompanied by microglial and astrocytic activation, and microglial recruitment to plaques and adoption of an aducanumab-specific pro-phagocytic and pro-degradation transcriptomic signature, indicating a role for microglia in aducanumab-mediated Aß clearance. Reductions in Aß and dystrophy were sustained 15 but not 30 wk after discontinuation, and reaccumulation of plaques coincided with loss of the microglial aducanumab signature and failure of microglia to reactivate. This suggests that despite the initial benefit from treatment, microglia are unable to respond later to restrain plaque reaccumulation, making further studies on the effect of amyloid-directed immunotherapy withdrawal crucial for assessing long-term safety and efficacy.


Assuntos
Anticorpos Monoclonais Humanizados , Microglia , Animais , Camundongos , Imunoterapia , Fagócitos , Placa Amiloide
11.
Sci Adv ; 10(1): eadh7957, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170768

RESUMO

Invading microbes face a myriad of cidal mechanisms of phagocytes that inflict physical damage to microbial structures. How intracellular bacterial pathogens adapt to these stresses is not fully understood. Here, we report the discovery of a virulence mechanism by which changes to the mechanical stiffness of the mycobacterial cell surface confer refraction to killing during infection. Long-term time-lapse atomic force microscopy was used to reveal a process of "mechanical morphotype switching" in mycobacteria exposed to host intracellular stress. A "soft" mechanical morphotype switch enhances tolerance to intracellular macrophage stress, including cathelicidin. Both pharmacologic treatment, with bedaquiline, and a genetic mutant lacking uvrA modified the basal mechanical state of mycobacteria into a soft mechanical morphotype, enhancing survival in macrophages. Our study proposes microbial cell mechanical adaptation as a critical axis for surviving host-mediated stressors.


Assuntos
Mycobacterium , Macrófagos/metabolismo , Fagócitos , Membrana Celular
12.
J Cell Sci ; 137(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294065

RESUMO

Microglia, professional phagocytic cells of the brain, rely upon the appropriate activation of lysosomes to execute their immune and clearance functions. Lysosomal activity is, in turn, modulated by a complex network of over 200 membrane and accessory proteins that relay extracellular cues to these key degradation centers. The ClC-7 chloride (Cl-)-proton (H+) antiporter (also known as CLCN7) is localized to the endolysosomal compartments and mutations in CLCN7 lead to osteopetrosis and neurodegeneration. Although the functions of ClC-7 have been extensively investigated in osteoclasts and neurons, its role in microglia in vivo remains largely unexamined. Here, we show that microglia and embryonic macrophages in zebrafish clcn7 mutants cannot effectively process extracellular debris in the form of apoptotic cells and ß-amyloid. Despite these functional defects, microglia develop normally in clcn7 mutants and display normal expression of endosomal and lysosomal markers. We also find that mutants for ostm1, which encodes the ß-subunit of ClC-7, have a phenotype that is strikingly similar to that of clcn7 mutants. Together, our observations uncover a previously unappreciated role of ClC-7 in microglia and contribute to the understanding of the neurodegenerative phenotypes that accompany mutations in this channel.


Assuntos
Proteínas de Membrana , Microglia , Animais , Microglia/metabolismo , Proteínas de Membrana/metabolismo , Cloretos/metabolismo , Peixe-Zebra/metabolismo , Prótons , Fagócitos/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(5): e2314627121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252818

RESUMO

The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns. Although there is evidence of cross talk between complement and PRR signaling pathways, knowledge of the full potential for C5a-PRR interaction is limited. In this study, we comprehensively investigated how C5a signaling through C5a receptors can modulate diverse PRR-mediated cytokine responses in human primary monocyte-derived macrophages and observed a powerful, concentration-dependent bidirectional effect of C5a on PRR activities. Unexpectedly, C5a synergized with Dectin-1, Mincle, and STING in macrophages to a much greater extent than TLRs. Notably, we also identified that selective Dectin-1 activation using depleted zymosan triggered macrophages to generate cell-intrinsic C5a, which acted on intracellular and cell surface C5aR1, to help sustain mitochondrial ROS generation, up-regulate TNFα production, and enhance fungal killing. This study adds further evidence to the holistic functions of C5a as a central immunomodulator and important orchestrator of pathogen sensing and killing by phagocytes.


Assuntos
Complemento C5a , Lectinas Tipo C , Macrófagos , Humanos , Complemento C5a/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Células Mieloides , Fagócitos , Transdução de Sinais
14.
Biol Trace Elem Res ; 202(1): 210-220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37088826

RESUMO

In leishmaniasis, the protective immunity is largely mediated by proinflammatory cytokine producing abilities of T cells and an efficient parasite killing by phagocytic cells. Notwithstanding a substantial progress that has been made during last decades, the mechanisms or factors involved in establishing protective immunity against Leishmania are not identified. In ancient Indian literature, metallic "bhasma," particularly that of "swarna" or gold (fine gold particles), is indicated as one of the most prominent metal-based therapeutic medicine, which is known to impart protective and curative properties in various health issues. In this work, we elucidated the potential of swarna bhasma (SB) on the effector properties of phagocytes and antigen-activated CD4+ T cells in augmenting the immunogenicity of L. donovani antigens. The characterization of SB revealing its shape, size, composition, and measurement of cytotoxicity established the physiochemical potential for its utilization as an immunomodulator. The activation of macrophages with SB enhanced their capacity to produce nitric oxide and proinflammatory cytokines, which eventually resulted in reduced uptake of parasites and their proliferation in infected cells. Further, in Leishmania-infected animals, SB administration reduced the generation of IL-10, an anti-inflammatory cytokine, and enhanced pro-inflammatory cytokine generation by antigen activated CD4+ T cells with increased frequency of double (IFNγ+/TNFα+) and triple (IFNγ+TNFα+IL-2+) positive cells and abrogated disease pathogeneses at the early days of infection. Our results also suggested that cow-ghee (A2) emulsified preparation of SB, either alone or with yashtimadhu, a known natural immune modulator which enhances the SB's potential in enhancing the immunogenicity of parasitic antigens. These findings suggested a definite potential of SB in enhancing the effector functions of phagocytes and CD4+ T cells against L. donovani antigens. Therefore, more studies are needed to elucidate the mechanistic details of SB and its potential in enhancing vaccine-induced immunity.


Assuntos
Apresentação de Antígeno , Antígenos de Protozoários , Linfócitos T CD4-Positivos , Calotropis , Ouro , Látex , Leishmania donovani , Macrófagos , Ayurveda , Células Th1 , Arsênio , Combinação de Medicamentos , Ouro/administração & dosagem , Ouro/farmacologia , Látex/administração & dosagem , Látex/farmacologia , Chumbo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Linfócitos T CD4-Positivos/imunologia , Fagócitos/efeitos dos fármacos , Fagócitos/imunologia , Leishmaniose/imunologia , Leishmaniose/parasitologia , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/crescimento & desenvolvimento , Leishmania donovani/imunologia , Antígenos de Protozoários/imunologia , Células Th1/imunologia , Animais , Camundongos , Células RAW 264.7 , Feminino , Camundongos Endogâmicos BALB C
15.
Nat Nanotechnol ; 19(2): 255-263, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37723279

RESUMO

Nanomedicines have been approved to treat multiple human diseases. However, clinical adoption of nanoformulated agents is often hindered by concerns about hepatic uptake and clearance, a process that is not fully understood. Here we show that the antitumour efficacy of cancer nanomedicine exhibits an age-associated disparity. Tumour delivery and treatment outcomes are superior in old versus young mice, probably due to an age-related decline in the ability of hepatic phagocytes to take up and remove nanoparticles. Transcriptomic- and protein-level analysis at the single-cell and bulk levels reveals an age-associated decrease in the numbers of hepatic macrophages that express the scavenger receptor MARCO in mice, non-human primates and humans. Therapeutic blockade of MARCO is shown to decrease the phagocytic uptake of nanoparticles and improve the antitumour effect of clinically approved cancer nanotherapeutics in young but not aged mice. Together, these results reveal an age-associated disparity in the phagocytic clearance of nanotherapeutics that affects their antitumour response, thus providing a strong rationale for an age-appropriate approach to cancer nanomedicine.


Assuntos
Nanopartículas , Neoplasias , Humanos , Camundongos , Animais , Neoplasias/terapia , Fagócitos/patologia , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Cinética
16.
Curr Opin Biotechnol ; 85: 103044, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091875

RESUMO

Immune recognition and uptake of nanoparticles remain the hot topic in nanomedicine research. Complement is the central player in the immune recognition of engineered nanoparticles. Here, we summarize the accumulated knowledge on the role of complement in the interactions of nanomaterials with blood phagocytes. We describe the interplay between surface properties, complement opsonization, and immune uptake, primarily of iron oxide nanoparticles. We discuss the rigor of the published research and further identify the following knowledge gaps: 1) the role of complement in the variability of uptake of nanomaterials in healthy and diseased subjects, and 2) modulation of complement interactions to improve the performance of nanomaterials. Addressing these gaps is critical to improving translational chances of nanomaterials for drug delivery and imaging applications.


Assuntos
Proteínas do Sistema Complemento , Nanopartículas , Humanos , Fagócitos , Sistemas de Liberação de Medicamentos , Nanomedicina/métodos
17.
STAR Protoc ; 5(1): 102781, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113143

RESUMO

Myeloid phagocytes are essential for antifungal host defense during systemic candidiasis. Here, we present a protocol for assessing phagocyte-fungal interactions in vivo in the kidney, the primary target organ of the murine systemic candidiasis model. We describe steps for intravital confocal microscopy and flow cytometry. We also detail a kidney tissue dissociation procedure to obtain highly pure functional phagocytes for utilization in downstream ex vivo fungal uptake and killing assays.


Assuntos
Candidíase , Rim , Fagócitos , Camundongos , Animais , Citometria de Fluxo , Fagócitos/microbiologia , Rim/diagnóstico por imagem , Microscopia Confocal
18.
J Innate Immun ; 16(1): 66-79, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38142680

RESUMO

INTRODUCTION: Hematophagous arthropods can acquire and transmit several pathogens of medical importance. In ticks, the innate immune system is crucial in the outcome between vector-pathogen interaction and overall vector competence. However, the specific immune response(s) elicited by the immune cells known as hemocytes remains largely undefined in Ehrlichia chaffeensis and its competent tick vector, Amblyomma americanum. METHODS: We utilized injection of clodronate liposome to deplete tick granulocytes combined with infection with E. chaffeensis to demonstrate their essential role in microbial infection. RESULTS: Here, we show that granulocytes, professional phagocytic cells, are integral in eliciting immune responses against commensal and pathogen infection. The chemical depletion of granulocytes led to decreased phagocytic efficiency of tissue-associated hemocytes. We demonstrate that E. chaffeensis can infect circulating hemocytes, and both cell-free plasma and hemocytes from E. chaffeensis-infected ticks can establish Ehrlichia infection in recipient ticks. Lastly, we provide evidence to show that granulocytes play a dual role in E. chaffeensis infection. Depleting granulocytic hemocytes increased Ehrlichia load in the salivary gland and midgut tissues. In contrast, granulocyte depletion led to a reduced systemic load of Ehrlichia. CONCLUSION: This study has identified multiple roles for granulocytic hemocytes in the control and systemic dissemination of E. chaffeensis infection.


Assuntos
Ehrlichia chaffeensis , Ehrlichiose , Ixodidae , Animais , Ehrlichia chaffeensis/fisiologia , Amblyomma , Hemócitos , Fagócitos
19.
Eur J Pharmacol ; 964: 176302, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154767

RESUMO

When host cells are exposed to foreign particles, dead cells, or cell hazards, a sophisticated process called phagocytosis begins. During this process, macrophages, dendritic cells, and neutrophils engulf the target by expanding their membranes. Phagocytosis of apoptotic cells is called efferocytosis. This process is of significant importance as billions of cells are eliminated daily without provoking inflammation. Both phagocytosis and efferocytosis depend on Ca2+ signaling. A big family of Ca2+ permeable channels is transient receptor potentials (TRPs) divided into nine subfamilies. We aimed to review their roles in phagocytosis. The present review article shows that various TRP channels such as TRPV1, 2, 3, 4, TRPM2, 4, 7, 8, TRPML1, TRPA1, TRPC1, 3, 5, 6 have roles at various stages of phagocytosis. They are involved in the phagocytosis of amyloid ß, α-synuclein, myelin debris, bacteria, and apoptotic cells. In particular, TRPC3 and TRPM7 contribute to efferocytosis. These effects are mediated by changing Ca2+ signaling or targeting intracellular enzymes such as Akt. In addition, they contribute to the chemotaxis of phagocytic cells towards targets. Although a limited number of studies have assessed the role of TRP channels in phagocytosis and efferocytosis, their findings indicate that they have critical roles in these processes. In some cases, their ablation completely abolished the phagocytic function of the cells. As a result, TRP channels are potential targets for developing new therapeutics that modulate phagocytosis.


Assuntos
Peptídeos beta-Amiloides , Canais de Potencial de Receptor Transitório , Peptídeos beta-Amiloides/metabolismo , Fagocitose , Macrófagos/metabolismo , Fagócitos , Neutrófilos/metabolismo , Apoptose , Canais de Potencial de Receptor Transitório/metabolismo
20.
Int Immunopharmacol ; 127: 111445, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38147777

RESUMO

Increasing evidence indicates that innate immune cells also possess immunological memory. Microglia are brain-resident innate immune cells and execute inflammatory and phagocytic functions upon environmental stimulation, during which processes triggering receptor expressed on myeloid cells 2 (TREM2) plays an important regulatory role. However, although microglia are known to exhibit innate immune memory related to inflammation when subjected to continuous inflammatory stimuli, whether microglia exhibit innate immune memory related to phagocytosis and whether TREM2 participates in innate immune memory of microglia remain unknown. Herein, we treated WT and Trem2 KO mice with peripheral injection of lipopolysaccharides (LPS) to induce microglial activation or microglial immune tolerance. We found that Tnfα and Il-1ß expression levels in the hippocampi were significantly elevated after 1xLPS and then dramatically decreased after 4xLPS in both WT and Trem2 KO mice; and their level changes were indistinguishable between WT and Trem2 KO mice. Moreover, 1xLPS significantly promoted microglial phagocytosis of synapses and caused microglial morphology changes resembling activated status in both WT and Trem2 KO mice. However, 4xLPS significantly reduced synapse phagocytosis and largely reversed morphology changes in WT microglia. While 4xLPS had no effect on reducing synapse phagocytosis in Trem2 KO microglia. RNA-seq analysis revealed that TREM2 deficiency reprogrammed complement and phagosome-related transcriptional landscape during immune tolerance. Our results demonstrate that microglia also exhibit immune tolerance related to phagocytosis of synapses and that TREM2 plays a crucial role in this process possibly through regulating complement system and phagosome-related gene expressions.


Assuntos
Microglia , Fagocitose , Camundongos , Animais , Microglia/metabolismo , Camundongos Knockout , Fagócitos , Sinapses , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...